Order Selection in Finite Mixtures of Linear Regressions
نویسندگان
چکیده
منابع مشابه
Fitting finite mixtures of generalized linear regressions in R
R package flexmix provides flexible modelling of finite mixtures of regression models using the EM algorithm. Several new features of the software such as fixed and nested varying effects for mixtures of generalized linear models and multinomial regression for a-priori probabilities given concomitant variables are introduced. The use of the software in addition to model selection is demonstrate...
متن کاملBayesian variable selection for finite mixture model of linear regressions
We propose a Bayesian method for variable selection in the finite mixture model of linear regressions. The model assumes that the observations come from a heterogeneous population which is a mixture of a finite number of sub-populations. Within each sub-population, the response variable can be explained by a linear regression on the predictor variables. So the whole data set can be modeled by a...
متن کاملLearning Mixtures of Linear Regressions with Nearly Optimal Complexity
Mixtures of Linear Regressions (MLR) is an important mixture model with many applications. In this model, each observation is generated from one of the several unknown linear regression components, where the identity of the generated component is also unknown. Previous works either assume strong assumptions on the data distribution or have high complexity. This paper proposes a fixed parameter ...
متن کاملSpectral Experts for Estimating Mixtures of Linear Regressions
Discriminative latent-variable models are typically learned using EM or gradient-based optimization, which suffer from local optima. In this paper, we develop a new computationally efficient and provably consistent estimator for a mixture of linear regressions, a simple instance of a discriminative latentvariable model. Our approach relies on a lowrank linear regression to recover a symmetric t...
متن کاملMixtures of Self-Modelling Regressions
A shape invariant model for functions f1,...,fn specifies that each individual function fi can be related to a common shape function g through the relation fi(x)=aig(cix + di) + bi. We consider a flexible mixture model that allows multiple shape functions g1,...,gK, where each fi is a shape invariant transformation of one of those gk. We derive an MCMC algorithm for fitting the model using Baye...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SSRN Electronic Journal
سال: 2011
ISSN: 1556-5068
DOI: 10.2139/ssrn.1974875